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NASA spacecraft have now returned many thousands of images of the surface of Mars. It is no longer practical to analyze
such a large dataset by hand, while the development of handwritten feature extraction tools is expensive and laborious. This
project investigates the application of machine learning techniques to problems of feature extraction and digital image
processing within the Mars dataset.

The Los Alamos GENIE machine learning software system uses a genetic algorithm to assemble feature extraction tools from
low-level image operators. Each generated tool is evaluated against training data provided by the user. The best tools in each
generation are allowed to “reproduce” to produce the next generation, and the population of tools evolves until it converges
to a solution or reaches a level of performance specified by the user. Craters are one of the most scientifically interesting and
most numerous features on Mars, and present a wide range of shapes at many spatial scales. We now describe results on
development of crater finder algorithms using voting sets of simple classifiers evolved by a machine learning/genetic
programming system (the Los Alamos GENIE software).
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1. INTRODUCTION: CRATER DETECTION WITH THE MARS ORBITAL CAMERA

The Mars Global Surveyor1 (MGS) satellite has been on orbit around Mars since September 1997.  It carries a suite of
scientific instruments including the Mars Orbiter Camera2 (MOC). The MOC is made up of two wide-angle cameras and one
narrow-angle, high-resolution camera. The narrow angle dataset, which is the focus of this study, provides imagery with a
spatial resolution of the order of 3 meters/pixel and is sensitive to light in a broad visible/near-infrared spectral range
(0.50µm – 0.90µm). Since arriving at the planet, the MOC has taken over 93,000 images, which have been used to study a
variety of geologic and atmospheric processes including sediments, dust streaks, and volcanism (e.g., see Refs. 1, 3-9). MGS
completed its primary mission on January 31, 2001, and continues to take data on areas of interest.

Craters are a rich source of information about planetary surfaces. The number density of craters per unit area as a function of
crater diameter can be used to estimate the age of the surface if the impactor flux and erosion rates are known. Alternately, if
the surface age is known from other methods, the crater record can be used to examine local erosion processes. Crater
surveys are potentially extremely informative, but large amounts of data are difficult to analyze using traditional techniques.
The actual counting is currently done by hand, by research students or trained volunteers This technique is limited by the
sheer volume of data now being returned by the satellites on orbit around Mars, as well as the inconsistencies in the numbers
returned by the counters. For example, seven students counted the craters in MOC image10 M1500956 for this study. The
students returned a different total for each survey, even if the same student was recounting the image, as shown in Table 1.
The average number of craters found was 222. We would describe the magnitude of variability in the returned results as
disappointing.

                                                          
∗ Further author information: (Send correspondence to C.S.P.) Email: plesko@lanl.gov



Hand count accuracy can be improved by averaging the results of many individual counts, but doing so multiplies an already
ponderous dataset by factors of ten or even hundreds. A preliminary study of this sort was conducted by Kanefsky, et. al.11, at
NASA Ames Research Center, using untrained volunteers to hand mark craters through a web-page interface. They found
that averaging the results of two hundred volunteers closely matched the results of an experienced image analyst on a given
image. A similar technique can be used with automated classification algorithms. One of the simplest commonly used
approaches to combining classifiers is through a process of voting, in which a group of binary classifiers (i.e., the answer
produced by the classifier is “yes” for feature or “no” for non-feature) vote on each data point, and the majority decision
holds. To be successful, this approach assumes that the mistakes made by different classifiers tend to be uncorrelated across
classifiers, while detections of the feature of interest are correlated. For example, separate classifiers that trigger on
“smoothness” and “brightness” might be successfully combined to detect young, uncratered surfaces.   Voting can be useful

Figure 1. The first thousand pixel rows of one of the 93,000 images returned by the Mars Global Surveyor
Mars Orbital Camera (MGS/MOC). Image M1500956 (see Ref. 10) is of an inter-crater plane in the
Deucalionis Regio area of the Martian southern hemisphere.  Detection and counting of small young craters
usual traditional manual techniques by trained graduate students and volunteers generally produces a highly
uncertain estimate for any given scene.

student first count second count
1 87
2 104
3 273
4 236 304
5 436
6 222
7 113

Table 1.  Comparison of hand-counts of craters in Figure 1.



when it is “cheap” to learn reasonably accurate classifiers (in terms of training time or computational effort) but expensive to
obtain a single, highly accurate classifier.

For the present study we describe the development of voting sets of crater finding algorithms, using a genetic programming
approach originally developed for Earth remote sensing applications. We are initially interested in developing pixel-level
algorithms that segment out spatial regions likely to contain craters, and in future work will explore higher-level, scale-
invariant processing which uses the geometry of the segmented regions (e.g., linear feature, circular feature, annular feature)
to complete the classification of craters as geometric objects. We present initial results with sets of classifiers, combined
using a voting procedure to improve performance.

2. GENIE: GENETIC PROGRAMMING FOR AUTOMATIC FEATURE EXTRACTION

Los Alamos National Laboratory’s GENIE software12-15 is a machine learning software system using techniques from the
fields of genetic algorithms (GA)16-18 and genetic programming (GP)19 to construct spatio-spectral feature extraction
algorithms for multi-spectral  remotely sensed imagery.  Both the structure of the feature extraction algorithm, and the
parameters of the individual image processing steps, are learned by the system.  GENIE has been described at length
elsewhere12-15, so we will only present a brief description of the system here.  In particular, the present work explores using
GENIE on panchromatic imagery.

GENIE follows the paradigm of genetic programming: a population of candidate image-processing algorithms is randomly
generated from a collection of low-level image processing operators, including texture measures, spectral band-math
operations (e.g. ratios of bands), and various morphological filters. The fitness of each individual is assessed from its
performance on training data provided by the human user via a graphical interface. Our fitness metric in based on measuring
the total error rate (false positives and false negatives) on the feature extraction task.  After a fitness value has been assigned
to each candidate algorithm in the population, the most fit members of the population reproduce with modification via the
evolutionary operators of mutation and crossover. This process of fitness evaluation and reproduction with modification is
iterated until the population converges, or some desired level of classification performance is attained, or some user-specified
limit on computational effort is reached (e.g. number of candidate algorithms evaluated).   The final result is a gray-scale
enhancement of the feature of interest, which is then converted into a final Boolean classification using a threshold.

The algorithms evolved by GENIE combine spatial and spectral processing, and the system was designed to enable
exploration of spatio-spectral image processing. This system has been shown to be effective in detecting complex spatio-
spectral terrain features in multispectral imagery, such as golf courses in MODIS Airborne Simulator imagery20, and in a
range of real world problems, including delineating and classifying wildfire burn scars21 and vegetation land-cover classes22

using a number of multispectral imagery datasets, and earlier work by the present authors on proposing the detection of
craters on Mars23 using a high-resolution panchromatic dataset (Mars Global Surveyor/Mars Orbital Camera).  In that work,
individual classifiers were evolved and encouraging qualitative results obtained, but performance outside the training area
showed a substantial degradation of performance.  This led us to take interest in schemes for suppressing false alarms,
including the voting scheme reported in the present work.

We now briefly describe our method of providing training data, our encoding of image-processing algorithms as
chromosomes for manipulation by the GA, our method for evaluating the fitness of individuals in the population, and the
voting scheme adopted.

2.1  Training Data

The environment for the population consists of one or a number of training scenes. Each training scene contains a raw image,
together with a weight plane and a truth plane. The weight plane identifies the pixels to be used in training, and the truth
plane locates the features of interest in the training data. Providing sufficient quantities of good training data is crucial to the
success of any machine learning technique. In principle, the weight and truth planes may be derived from an actual ground
campaign (i.e., collected on the ground at the time the image was taken), may be the result of applying some existing
algorithm, and/or may be marked-up by hand using the best judgement of an analyst looking at the data. We have developed
a graphical user interface (GUI), called Aladdin, for manual marking up of raw imagery. Using Aladdin, the analyst can view
a raw image in a variety of ways, and can mark up training data by painting directly on the image using the mouse. Training
data is ternary-valued, with the possible values being “true”, “false”, and “unknown”. True defines areas where the analyst is



confident that the feature of interest does exist. False defines areas where the analyst is confident that the feature of interest
does not exist. Unknown pixels do not influence the fitness of a candidate algorithm.

2.2  Representation of Image-Processing Algorithms

Traditional genetic programming19
 (GP) uses a variable sized (within limits) tree representation for algorithms. Our

representation differs in that it allows for reuse of values computed by sub-trees, i.e. the resulting algorithm is a graph rather
than a tree. The image processing algorithm that a given chromosome represents can be thought of as a directed acyclic graph
where the non-terminal nodes are primitive image processing operations, and the terminal nodes are individual image planes
extracted from the multi-spectral image used as input. Our representation also differs in that the total number of nodes is
fixed (although not all of these may actually be used in the final graph), and crossover is carried out directly on the linear
representation.

We have restricted our “gene pool” to a set of useful primitive image processing operators (“genes”). These include spectral,
spatial, logical and thresholding operators. The set of morphological operators is restricted to function-set processing
morphological operators, i.e., gray-scale morphological operators having a flat structuring element. The sizes and shapes of
the structuring elements used by these operators is also restricted to a pre-defined set of primitive shapes, which includes the
square, circle, diamond, horizontal cross and diagonal cross, and horizontal, diagonal, and vertical lines. The shape and size
of the structuring element are defined by operator parameters. Other local neighborhood/windowing operators such as mean,
median, etc., specify their kernels/windows in a similar way. We define scratch planes as blocks of memory for storing
intermediate calculations within a candidate image-processing algorithm. Once “scratch” planes have been generated, GENIE
is allowed to explore weighted sums, differences and ratios of data and scratch planes.

A single gene consists of an operator, plus a variable number of input arguments specifying from where input is read, output
arguments specifying where output is to be written, and any additional parameters that might be required to specify how the
specific operator works (e.g., the diameter and shape of a structuring element used in a morphological filter). The operators
used in Genie take one or more distinct image planes as input, and generally produce a single image plane as output. Input
can be taken from any data plane in the training data image cube. Output is written to one of a number of scratch planes,
temporary workspaces where an image plane can be stored. Genes can also take input from scratch planes, but only if that
scratch plane has been written to by another gene positioned earlier in the chromosome sequence. We use a notation for
genes12,14  that is most easily illustrated by an example: the gene [ADDP rD0 rS1 wS2] applies pixel-by-pixel addition
to two input planes, read from data plane 0 and from scratch plane 1, and writes its output to scratch plane 2. Any additional
required operator parameters are listed after the output arguments.

Note that although all chromosomes have the same fixed number of genes, the effective length of the resulting algorithm may
be smaller than this. For instance, an operator may write to a scratch plane that is then overwritten by another gene before
anything reads from it. GENIE performs an analysis of chromosome graphs when they are created and only carries out those
processing steps that actually affect the final result. Therefore, the fixed length of the chromosome acts as a maximum
effective length.

2.3  Supervised Classification and Fitness Evaluation

Each candidate image-processing algorithm generates a number of intermediate feature planes (or “signature” planes), which
are then combined to generate a Boolean-valued mask for the feature of interest. This combination is achieved using a
standard supervised classifier (we use the Fisher linear discriminant24 ), and an optimal threshold function.

Complete classification requires that the image-processing algorithm produce a binary-valued output plane for any given
scene. It is possible to treat, e.g., the contents of the first scratch plane as the final output for that candidate image- processing
algorithm (thresholding would generally be required to obtain a binary result, though Genie can choose to apply its own
Boolean thresholding functions). However, we have found it to be useful to perform the combination of the data and scratch
planes using a non-evolutionary method, and have implemented a supervised classifier backend. To do this, we first select a
subset of the scratch planes and data planes to be “signature” planes. For the present experiments, this subset consists of just
the scratch planes. We then use the provided training data and the contents of the signature planes to derive the Fisher
Discriminant, which is the linear combination of the signature planes that maximizes the mean separation in spectral terms
between those pixels marked up as “true ”and those pixels marked up as “false”, normalized by the total variance in the
projection defined by the linear combination. The output of the discriminant-finding phase is a real-valued single-plane



“answer” image. This is reduced to a binary image by exhaustive search over all the training pixels to find the threshold value
that minimizes the total number of misclassifications (false positives plus false negatives) on the training data.

The fitness of a candidate solution is given by the degree of agreement between the final binary output plane and the training
data. This degree of agreement is determined by the Hamming distance between the final binary output of the algorithm and
the training data, with only pixels marked as true or false (as recorded in the weight plane) contributing towards the metric.
The Hamming distance is then normalized so that a perfect score is 1000.

2.4 Combining classifiers using voting

We adopt a simple voting scheme: a set of reasonably fit binary classifiers is evolved in a series of separate GENIE runs.
GENIE’s genetic algorithm is a stochastic learning process, so individual results are likely to be highly variable in structure.
The binary classification outputs of these classifiers is then summed and thresholded at whatever level we choose to define
the joint decision.  In general, a simple majority rule is adopted, though if the classifiers are noisy, a unanimous rule decision
may also be adopted.  Voting classifier schemes have been in use for a long time (see, e.g., the general review in Ref. 25),
and have led to more elaborate schemes for building a sequence of supervised classifiers trained on specially selected subsets
of the available labeled training data.  The extension of these more complex schemes to highly correlated datasets, such as the
pixels of a high-resolution image, is currently a topic of research.

3. RESULTS

We selected a training image (MOC image M0803054, near Louros Valles (8.5S, 82.0W), Ref. 26), chosen to present a
reasonably homogeneous terrain marked by a number of bowl shaped craters obvious to the human eye. GENIE was trained
on the first 930 pixel rows of the image (the image is 830 pixels wide) with a truth file based on manual analysis (Fig. 2;
result with voting shown in Fig. 3) in which the analyst has marked some of the fresh, bowl shaped craters in the scene as
true, and some of the protruding surface features and non-cratered terrain as false.  The next 970 pixel rows of this scene
where also marked by hand, and kept back to serve as our Test Scene 1 (Fig. 4).  The final 530 pixel rows of this image show
a noticeable brightening due to angle of Solar illumination (Fig. 5), and hence this part of the scene presents a tougher
classification challenge for any classifier trained only on the first 930 pixel rows of the scene.  We use this final 530 pixel
row image as our Test Scene 2.

GENIE was run 6 times, each time with a new population of 30 chromosomes per generation, each run lasting for 50
generations. Running on standard Intel/Linux workstations, each run required approximately 1 hour of wall-clock time.  Each

Training Scene Test Scene 1 Test Scene 2
Class. Score D.R. F.A.R. Score D.R. F.A.R. Score D.R. F.A.R.

1 915.1 90.65 7.63 869.1 91.04 17.22 774.9 98.82 43.84
2 969.3 97.56 3.7 959.1 94.78 2.96 950.9 98.40 8.22
3 950.5 96.29 6.19 897.1 95.34 15.93 761.1 99.39 47.17
4 964.9 96.44 3.46 954.2 93.48 2.64 954.1 98.38 7.56
5 979.7 98.94 3.00 960.1 94.76 2.74 951.3 98.03 7.77
6 949.6 94.26 4.34 908.4 92.09 10.41 796.9 99.47 40.09

Vote 1 980.3 97.31 1.24 960.0 94.33 2.34 950.2 98.50 8.46
Vote 2 972.6 97.48 2.97 935.9 94.77 7.59 818.9 99.51 35.73
Vote 3 923.4 84.83 0.15 919.3 84.38 0.52 966.1 96.77 3.54

Table 2. Results of individual classifiers and of voting.  Six individual classifiers (“Class.”) were
evolved using GENIE, and then combined using voting with a majority rule.  Classifier  “Vote 1”
gives the results achieved by a majority voting scheme with contributions from all six classifiers.
Classifier “Vote 2” gives the results achieved by a majority voting scheme with contributions from
all classifiers apart from the strongest individual classifier, Classifier 5.  The  “Score” is the score
reported by GENIE,  in the range 0 – 1000 where 1000 is a perfect score.  D.R. is the detection rate
in percent, and F.A.R. is the false alarm rate in percent.  Classifier “Vote 3” shows the result of
adopting a “unanimous” voting decision rule for the all-component “Vote 1” classifier.



candidate algorithm contained a maximum of 18 image processing operations, and used three intermediate scratch planes.
Results for individual classifiers and for the combined “voting” classifier, is shown in Table 2.

The best individual crater finding algorithm achieved a training score of 980, with a detection rate of 97% and a false alarm
rate of 3%. On the test data, the performance of this classifier dropped as described in Table 2) to a score of 960 on the
similar Test Scene 1, and to 951 on the noticeably differently illuminated The algorithm found 9 image processing steps,
comprised of a mixture of morphological spatial filters and texture and neighborhood statistics measures. Note that even
though we specified a maximum of 18 image processing for the candidate algorithms, only 9 image processing steps appear
in the final best algorithm.  In the language of genetic algorithms, the remaining 9 potential image processing steps remain
“unexpressed genes”, in principle providing robustness against mutation and providing room for further adaptation if we later
decide to update the training data and continue the evolution of candidate solutions.

Classifier “Vote 1” gives the results achieved by a majority voting scheme with contributions from all six classifiers. This
combined classifier slightly out-performs the best individual classifier on the training scene, and performs slightly worse than
the single best classifier when applied out of sample.  This combined classifier out-performs all the other classifiers on the
training scene and on Test Scene 1, and has average performance on Test scene 2. The situation on Test Scene 2 is complex,
and the small amount of data is suggestive of a split in the behavior of individual classifiers, between those that continue to
work under the changed illumination conditions, and those that fail under previously unexperienced conditions.  As expected,
the false alarm rate reported by the voting set of classifiers is substantially lower than the false alarm rate reported by any
other classifier on the training scene or on Test Scene 1, and achieves results comparable to the best individual classifier on
Test Scene 2.

Results with classifier “Vote 1” raise the question, how much of the behavior of this classifier is simply due to the good
individual Classifier 5?  Classifier “Vote 2” gives the results achieved by a majority voting scheme with contributions from
all classifiers apart from the strongest individual classifier, Classifier 5.  As can be seen, detection rates are maintained
relative to classifier “Vote 1”, while false alarm rates rise somewhat.

Figure 2. MOC Image M0803054: Training Scene and Training Data.  The training scene shown (Left) is an
830x930 pixel region imaged by the MOC high-resolution instrument.   The training data (Right), obtained by
traditional inspection of the image by a trained image analyst graduate student, shows the locations of regions
containing young bowl-shaped craters (marked in light gray) and locations of  example non-crater features
(marked in black).



Classifier “Vote 3” shows the result of adopting a “unanimous” voting decision rule for the all-component “Vote 1”
classifier. For application where achieving low false alarm rate is paramount, this is clearly a superior classifier.  The extent
to which this low-noise classifier can be used as the initial stage of a geometric-based extraction of craters as objects, will be
the subject of future work.

4. CONCLUSIONS

The surface of Mars has been observed from orbit at a number of progressively finer spatial scales, from kilometers (Mariner
series), to 100’s of meters (Viking), and most recently at the few meter scale (Mars Global Surveyor, and Mars Odyssey).
These new data sets hold out the greatest chance of significant progress in understanding the history of the Martian surface,
while also presenting the greatest challenge to traditional manual analysis techniques. This study investigated the evolution of
a voting set of crater finding algorithms for application to the Mars Orbiter Camera narrow angle dataset. We described
results on training and test images. The algorithm is successful at detecting craters within the images, and generalized well to
an image that it had not seen before. We find these results to be encouraging for the application of GENIE to the MOC
panchromatic dataset.
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Figure 3. MOC Image M0803054: Training Scene and Result. Result (Right) obtained by majority vote of six
independently evolved GENIE image processing classifiers for  regions containing  young bowl-shaped craters.
See Table 2 for quantitative analysis.



Figure 4. MOC Image M0803054: Test Scene 1 and Result. Result (Right) obtained by majority vote of six
independently evolved  GENIE image processing classifiers for  regions containing  young bowl-shaped craters.
See Table 2 for quantitative analysis.  Test Scene 1 is similar in character to the training scene.

Figure 5. MOC Image M0803054: Test Scene 1 and Result. Result (Right) obtained by majority vote of six
independently evolved  GENIE image processing classifiers for  regions containing  young bowl-shaped craters.
See Table 2 for quantitative analysis.  Test Scene 2 has a noticeably different general illumination level at the
southern edge of the image, which presents a stronger test of generalization of the classifiers evolved by GENIE.
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